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Abstract. We present the results of mean-field calculations on a symmetry based semimicroscopic
model for betaine calcium chloride dihydrate. The model takes into account the three degrees of
freedom associated with the lowest energy phonon branches as relevant variables and experimental
inelastic neutron scattering data and observed transition temperatures are used to fit the coupling
constants of the model potential. Although the method does not allow us to predict incommensurate
phases, the results show the failure of previous models based on continuous variables to reproduce
the observed phase diagram. The insertion of a new term in the model potential corresponding
to anharmonic interactions between nearest neighbours is shown to be crucial to stabilize some
experimentally observed commensurate phases.

1. Introduction

Betaine calcium chloride dihydrate (BCCD) exhibits a very rich sequence of phase transitions
[1–3] corresponding to different commensurate and incommensurate phases modulated along
thec axis. At room temperature the crystal is orthorhombic with space groupPnma. At 164 K
the structure becomes modulated with an incommensurate wavevector close tok = 1

3c
∗ and

at lower temperatures the modulation wavevector decreases monotonically down tok = 0 at
46 K. Between these temperatures BCCD presents a great variety of high order commensurate
and incommensurate phases resembling a devil’s staircase behaviour (see [4] and [5] for reviews
about the experimental and theoretical results respectively). Another striking feature of BCCD
is its sensitivity to external fields. Changes of pressure and electric field affect considerably
the stability range of the observed phases [6, 7].

Landau theory has been often used to study modulated crystals, but, as for each
commensurate phase a different lock-in term must be included in the free energy expansion,
the presence of a large number of commensurate phases in the case of BCCD makes this
kind of approach rather artificial [8, 9]. Nevertheless, a symmetry analysis [10] of the phase
transitions in BCCD shows that the symmetry of the order parameter may be the same for the
whole sequence of phase transitions. The successive transitions take place through the lock-in
of the wavevector into different commensurate values [11] but the symmetry transformation
properties of the order parameter are not altered.
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Two different microscopic approaches have been used in the literature to explain the
existence of complex phase diagrams including commensurate and incommensurate phases
like that of BCCD. On one hand, if the spatial range of the interactions between the basic
degrees of freedom of the model is extended to further neighbours, the instabilities may lie at a
general point in the Brillouin zone and give rise to incommensurate phase transitions [12, 13].
On the other hand, if the interactions are limited to nearest neighbours but the number of degrees
of freedom per cell is increased a similar behaviour may be obtained [14]. This second point
of view can be easily be interpreted in terms of the dynamics of the system, the interaction
between the phonon branches associated with the relevant degrees of freedom being the origin
of the instability [15]. In fact, the same mechanism applies to the double Ising spin (DIS) wich
has been used as a frame for interpretation of the phase diagram of BCCD in several recent
papers [16–18]. However, as the main ingredients of the DIS model are pseudo-spin variables,
relation to the soft phonon dynamics observed in experiments is lost.

Inelastic neutron scattering measurements in the high temperature phase [19] of BCCD
show that the three lowest energy branches interact strongly and this interaction seems to be
the origin of the critical mode that destabilizes the structure. According to [10] the frozen
combination of the three degrees of freedom corresponding to the three branches should be
almost the same for all the modulated phases, only the amplitude and the lock-in global
phase could vary to give the symmetries observed experimentally. This point of view has
been exploited to obtain two models [20, 21] based on two continuous variables per half cell.
Hlinka et al [20] calculated the thermal renormalization of the harmonic couplings due to the
anharmonic terms of the Hamiltonian by fitting the temperature dependence of the experimental
phonon branches but no further analysis of the phase diagram is done. Kappler and Walker [21]
proposed a symmetry-adapted free energy and studied the stability range of the commensurate
phases. Thermal effects were supposed to affect in an effective manner the harmonic terms of
the free energy and the path in the parameter space that corresponds to the experimental phase
transitions was obtained varyingad hocthe harmonic couplings with temperature.

In this work these two previous models are revised and extended. The values of all the
couplings are calculated from the experimental phonon branches in the high temperature phase
[19] and the transition temperatures between several observed structures. Once the parameters
are obtained the resulting phase diagram is studied and compared with the experimental one.
All the calculations have been done within the mean-field approximation and only low-order
commensurate phases have been included in the phase diagrams.

2. The model

The structure of BCCD in the normal phase is orthorhombic with space groupPnmaand four
structural units per unit cell. According to [20] the structure may be simplified considering
the four columns along theb axis composed by the betaine molecules and the neighbouring
inorganic Ca complexes (see figures 1, 2 and 3 of [20]). The rotations of both betaine
and Ca complexes along their preferential axis in the (a, c) plane are known to be strongly
correlated within one column in thePnmaphase [20]. An analysis of the modulated phases
shows that this correlation is also present in the frozen distortions of some commensurate and
incommensurate structures of BCCD [22]. Considering that this correlation is infinitely strong,
the four librational degrees of freedom associated with each column in the unit cell give rise to
two optic branches in a extended zone scheme. The uniform translations of the columns along
theb axis correspond to two more branches one of them being the acoustic one. As we are
mainly interested in the dispersion branches along thec∗ direction, columns at different cells
lying at the samec coordinate are supposed to be also completely correlated and we need just
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one index to describe the distortions of the whole layers of columns perpendicular toc: xn and
yn for the displacements andηn andξn for the librations. Under these assumptions the glide
planeσa operates on the four variables as a translationc/2, thus, the phonon eigenvectors can
be defined in one half of the unit cell and the Brillouin zone is doubled. The periodicity of the
model crystal isc/2 with four variables per reduced cell.

The model potential can be expressed as [20]

V =
∑
i

[a1(x
2
i + y2

i ) + a2xiyi + a3(xixi+1 + yiyi+1) + a4(η
2
i + ξ2

i ) + a5ηiξi+1 + a6ηiξi

+a7(ηiηi+1 + ξiξi+1) + a8ηi+1ξi + a9(ξixi + ηiyi) + a10(ξiyi + ηixi)

+a11(xiξi+1 + ηiyi+1) + a12(xi+1ξi + ηi+1yi) + b1(η
4
i + ξ4

i )

+b2η
2
i ξ

2
i + b3ξiηi(η

2
i + ξ2

i )]. (1)

The last three terms represent the only symmetry allowed anharmonic interactions that involve
rotations in the same layer.

Phonons propagating alongc∗ may be constructed from the following linear combination
of the relevant variables:

φi = ξi + ηi√
2

ψi = ξi − ηi√
2

ui = xi + yi√
2

vi = xi − yi√
2
.

The Fourier transform of these symmetry adapted variables may be interpreted as the
collective displacement coordinates that correspond to the following representations atk = 0
andk = c∗ [20, 21]:

φ(k = 0) andu(k = 0)→ B2u φ(k = c∗) andu(k = c∗)→ B1g

ψ(k = 0) andv(k = 0)→ B3g ψ(k = c∗) andv(k = c∗)→ Au.

In the present work a further simplification will be assumed. As the fourth branch in the
experimental phonon curves lies at quite high energies it does not mix significantly with the
two librational branches and it does not seem to play an essential role in the phase transition
mechanism. So, the antisymmetric displacement coordinatevi has been dropped and the
potential in the new basis becomes

V =
∑
i

[
A1

8
(ui − ui+1)

2 +
A2

2
φ2
i +

A3

2
ψ2
i +

A4

2
φiφi+1 +

A5

2
ψiψi+1

+
A6

4
ui(2φi − φi+1− φi−1) +

A7

2
ui(ψi+1− ψi−1) +

A8

2
φi(ψi+1− ψi−1)

+
B1

4
φ4
i +

B2

4
ψ4
i +

B3

4
φ2
i ψ

2
i

]
. (2)

The corresponding dynamical matrix may be written as

D(k) =


A1 sin2 kπ

2
A6 sin2 kπ

2
iA7 sinkπ

A6 sin2 kπ

2
A2 +A4 coskπ iA8 sinkπ

−iA7 sinkπ −iA8 sinkπ A3 +A5 coskπ

 . (3)

It has to be pointed out that the model potential (2) and the dynamical matrix (3) correspond
to the model [21], apart from the explicit treatment of the thermal renormalization that will be
explained in the next section.

The number of unknown coefficients may be reduced using some experimental results.
From ultrasound experiments [23] and the observed slope of the acoustic branch [19] we have
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A1 = 1.8 × 4π2 THz2. At low temperatures, the frequency of the two soft optic phonon
branches increases and the saturated value of the lowest frequency atk = 0 is around 1.0 THz
[24, 25]. AtT = 0 this corresponds to the condition

√
2(A2 − A4) = 1× 4π2 THz2. Using

these two restrictions the number of parameters to be obtained is eight, five harmonic couplings
and three anharmonic ones.

3. Mean-field approximation

3.1. Structures and free energy

The eight model parameters have been obtained from information about the experimental
phonon branches at different temperatures and some transition temperatures between selected
commensurate phases. Thus, the core of the fitting procedure requires us to obtain the
renormalizing effect of the anharmonic terms over the vibrational frequencies and the free
energies of equilibrium structures for a given periodicity.

In the independent-site approximation [13] the effect of the neighbours is taken into
account as an average field and the variables at sitei ‘feel’ the following potential:

Vi = A1

4
ui(ui − ūi−1− ūi+1) +

A2

2
φ2
i +

A3

2
ψ2
i +

A4

2
φi(φ̄i+1 + φ̄i−1)

+
A5

2
ψi(ψ̄i+1 + ψ̄i−1) +

A6

4
[2uiφi − ui(φ̄i+1 + φi−1)− φi(ūi+1 + ūi−1)]

+
A7

2
[ui(ψ̄i+1− ψ̄i−1) +ψi(ūi−1− ūi+1)]

+
A8

2
[φi(ψ̄i+1− ψ̄i−1) +ψi(φ̄i−1− φ̄i+1)] +

B1

4
φ4
i +

B2

4
ψ4
i +

B3

4
φ2
i ψ

2
i (4)

and the mean values are calculated selfconsistently:

χ̄i = 1

Zi

∫
χ exp

(
Vi

T

)
du dφ dψ χ = u, φ,ψ

with Zi =
∫

exp

(
−Vi
T

)
du dφ dψ. (5)

The entropy may be written as

S =
∑
i

Si = −
∑
i

∫
wi(u, φ,ψ) lnwi(u, φ,ψ)du dφ dψ

with wi(u, φ,ψ) = 1

Zi
exp

(
−Vi
T

)
and the free energy becomes [13]:

F = −
∑
i

[
− A1

4
ūi ūi+1 +A4φ̄i φ̄i+1 +A5ψ̄iψ̄i+1− A6

4
ūi(φ̄i+1 + φ̄i−1)

+
A7

4
ūi(ψ̄i+1− ψ̄i−1) +

A8

4
φ̄i(ψ̄i+1− ψ̄i−1) + T lnZi

]
. (6)

Thus, for ann/m commensurate structure there are 6m equations (equation (5)) to be solved
selfconsistently in order to obtain the equilibrium structure and the corresponding free energy.
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3.2. Phonons

The calculation of phonon branches requires us to go beyond the mean-field theory to take into
account the fluctuations [13]. The effect of the temperature arises from the on-site potential,
the couplings between adjacent variables being treated exactly. In the high temperature phase
the mean value of the three variables is zero and the on-site potential (4) becomes:

Vi = A1

4
u2
i +

A2

2
φ2
i +

A3

2
ψ2
i +

A6

2
uiφi +

B1

4
φ4
i +

B2

4
ψ4
i +

B3

4
φ2
i ψ

2
i

that can be approximated by a harmonic potential:

V HARi = A1

4
u2
i +

A∗2(T )
2

φ2
i +

A∗3(T )
2

ψ2
i +

A6

2
uiφi

whereA∗2(T ) andA∗3(T )must be calculated to ensure that the on-site potential and its harmonic
approximation give the same value of the fluctuations at a given temperature. For the harmonic
potential we have:

〈φ2〉HAR = 2A1

2A1A
∗
2(T )− A2

6

T and 〈ψ2〉HAR = T

A3(T )
.

Thus, both potentials give the same fluctuations if the harmonic couplings are chosen in the
following way:

A∗2(T ) =
A2

6φ
2 + 2A1T

2A1φ2
A∗3(T ) =

T

ψ2
(7)

where φ2 and ψ2 represent the fluctuations calculated numerically with the anharmonic
potential.

Thus, the values ofφ2 andψ2 give us the renormalized coefficientsA∗2(T ) andA∗3(T ) that
have to be used instead ofA2 andA3 in the expression of the dynamical matrix (3) to take into
account the thermal renormalization of the phonon branches.

4. Results

Inelastic neutron scattering measurements performed in the high temperature phase [20] and
information about transition temperatures between some commensurate phases provide enough
information to fit all the potential parameters. The eigenvalues of the dynamical matrix were
calculated at four different temperatures, 164, 170, 190 and 250 K. The first contribution to
the least square fitting corresponds to the differences between the calculated and experimental
frequencies (93 values) and two additional conditions for the frequency of the soft mode,
dω/dk = 0 andω = 0 at k = 0.32 c∗ and T1 = 164 K. The experimental transition
temperatures were taken into account calculating the free energy of the 1/4II , 1/5II , 1/7II
and 0/1II phases and the following conditions were added to the least squares fitting:

F 1
4II
(75 K) = F 1

5II
(75 K) F 1

7II
(46 K) = F 0

1II
(46 K) (8)

whereF represents the free energy of the equilibrium structure. Due to correlations between
the anharmonic parameters similar values of the goodness of the fit were obtained for parameter
sets corresponding to quite different phase diagrams. Thus, we decided to perform different
fits for a fixed value of theB3 anharmonic parameter. For each value ofB3 the parameter set
that gives the best fit has been used to calculate the free energies of then/m commensurate
phases withn 6 2 andm 6 7. The global phase of the modulation was obtained by looking
at the position of the maxima, minima and zeros of the obtained profiles forui , φi and
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Table 1. Possible space groups of the commensurate phases of BCCD considering an unique
symmetry of the order parameter (33) for different wavevectors (k = (n/m)c∗) and global phases
of the modulation (8) [10].

n/m Label 8 Space group

odd/odd I 0 P1121/a

II π/2 P212121

III arbitr. P1121

even/odd I 0 P21/n11
II π/2 Pn21a

III arbitr. Pn11

odd/even I 0 P121/c1
II (n/2m)π P21ca

III arbitr. P1c1
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Figure 1. Free energy(1F(×4π2 × 103 THz2)) of
the 1/4II , 1/5II , 1/7II and 0/1II phases with respect
to the 1/3II phase for the model potential without
nearest neighbour anharmonic interactions. The model
parameters were fitted using the experimental phonon
branches and two transition temperatures between
commensurate phases(B3 = 0.08× 4π2 THz2).

Figure 2. Phase diagram obtained by fitting the model
parameters using the experimental phonon branches and
two transition temperatures for the model including
nearest neighbour anharmonic interactions. The dashed
line atB3 = 0.06×4π2 THz2 indicates a phase transition
sequence similar to that observed in BCCD.

ψi after solving the selfconsistency equations (5) and in all cases the obtained structures
were of type I and II (see table 1). The results show that at low and high values ofB3 the
ground states correspond to the 1/2I and 1/2II phases respectively. For a small range of
B3(0.06× 4π2 THz2 < B3 < 0.13× 4π2 THz2) the low temperature phase agrees with the
experimentally observed ferroelectric 0/1II phase but the high order commensurate phases
are not stable in any temperature range. In figure 1 the free energies of the various phases are
represented forB3 = 0.08× 4π2 THz2 in comparison with the free energy of the 1/3II phase
(1F = Fα−F 1

3II
). Although the condition (8) is fulfilled, the low values of the free energy of

the 1/3II phase prevent the stabilization of the high order phases and a direct transition from
the 1/3II phase to the 0/1II is obtained at 25 K.

Some further attempts to improve the model were made by introducing new harmonic
couplings of longer range but the results did not change significantly. However, the insertion of
anharmonic couplings between adjacent layers changed drastically the resulting phase diagram.
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One of the possible terms to be considered is [20]

B4

4
(ξ2
i ξ

2
i+1 + η2

i η
2
i+1) (9)

which in terms of the symmetry adapted variables becomes

B4

4
[φ2
i φ

2
i+1 +ψ2

i ψ
2
i+1 + φ2

i ψ
2
i+1 + φi+1ψ

2
1 + 4φiψiφi+1ψi+1].

The insertion of this interaction implies the addition of the following term to the on-site
potential in equation (4):

B4

4
[(φ2

i +ψ2
i )(φ

2
i+1 + φ2

i−1 +ψ2
i+1 +ψ2

i−1) + 4φiψi(φi+1ψi+1 + φi−1ψi−1)].

This term modifies the calculation of the phonon frequencies and equilibrium structures.
On one hand, asφ2

i andψ2
i are not null in thePnamphase the calculation of the parameters of

the harmonic approximation (equation (7)) in the high temperature phase to obtain the phonon
branches becomes a selfconsistency problem. On the other hand, the mean-field calculation
of the structure (equation (5)) requires not only selfconsistency on the mean valuesūi , φ̄i and
ψ̄i , but also in the correlation termsφ2

i , ψ
2
i andφiψi , so six variables for each layer.

The model parameters were obtained as in the previous model, that is, for different values
of B3 the rest of the model parameters were fitted using the experimental information about
the phonon branches and the two transition temperatures between commensurate phases at 75
and 46 K. The inclusion of the new anharmonic term improved the goodness of fit and changed
drastically the phase diagram as can be seen in figure 2. For small values ofB3 the ground state
does not correspond to the observed 0/1II phase and at high values the 2/7II phase disappears.
In the central region the phase diagram resembles qualitatively that of BCCD. In table 2 the
obtained model parameters and transition temperatures forB3 = 0.06× 4π THz2 are listed.
The agreement with the experimental values is quite good and shows the ability of this model
to reproduce correctly the observed sequence of phase transitions in BCCD at zero pressure.
Since the model contains three relevant degrees of freedom, nearest neighbour harmonic in-
teractions are sufficient for the presence of incommensurate phases [14]. Thus, the existence
of the 1/3II phase has to be interpreted within the limits of the present calculations. We have
obtained that at high temperatures the energy of the tripled phase is lower than that of the 2/7II
phase but this does not exclude incommensurate phases being stable at these temperatures.
The calculation of the range of stability of the incommensurate and high order commensurate
phases would require more sophisticated methods such as fixed point expansions [16] which
are out of the scope of this work.

Table 2. Model parameters (×4π2 THz2) and phase transition sequence for the model with nearest
neighbour anharmonic coupling andB3 = 0.06× 4π2 THz2.

A1 = 1.8 A2 = −0.2387 A3 = 0.0732 A4 = −0.2613 A5 = 0.1319 A6 = −0.3741
A7 = 0.2065 A8 = 0.1557 B1 = 0.068 86 B2 = 0.019 13 B4 = −0.014 60
Pnma −→

164.0 K

1
3II
−→

146.9 K

2
7II
−→

113.9 K

1
4II
−→

75.2 K

1
5II
−→

57.9 K

1
6II
−→

49.6 K

1
7II
−→

46.1 K

0
1II

5. Conclusions

The anharmonic interaction between nearest neighbours plays a fundamental role in the
behaviour of models for BCCD based on continuous variables. In a rigorous treatment, this
interaction should produce the thermal renormalization of the dispersion of the bare branches,
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that is, the temperature dependence of the coupling parametersA4 andA5. In the present work,
within the mean-field approximation, the dispersion of the bare branches is kept constant. The
presence of the anharmonic coupling between nearest neighbours changes the values of the
rest of the anharmonic couplings, equilibrium structures at a given temperature and associated
energies, this change being essential to obtain a phase diagram in agreement with the observed
behaviour of BCCD.

Some remarks may be made in relation to the results presented by Kappler and Walker [21].
They reproduce the experimental phase sequence by varyingad hoctwo linear combinations
of the harmonic couplings in their symmetry-adapted free energy. Actually the critical
parameter that influences more drastically the behaviour of their model corresponds to the
sumJ+ = A4 + A5 and the variation of this parameter is necessary to reproduce the correct
phase diagram. The temperature variation of theJ+ coefficient corresponds to a renormalization
of the dispersion of the two bare optic branches. As mentioned, the last term (8) added to our
potential produces the same kind of renormalization, so it may be concluded that the importance
of nearest neighbour anharmonic interactions to stabilize the high order phases is implicitly
present in [21]. The anharmonic coupling between adjacent layers produces changes of the
dispersion of the bare optic branches with temperature and this thermal effect is the one that
gives the correct path in the phase diagram.
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